If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-14x^2+29x-3=0
a = -14; b = 29; c = -3;
Δ = b2-4ac
Δ = 292-4·(-14)·(-3)
Δ = 673
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{673}}{2*-14}=\frac{-29-\sqrt{673}}{-28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{673}}{2*-14}=\frac{-29+\sqrt{673}}{-28} $
| 6x+9=1x+8 | | 6x+9=1x+7 | | 6x+9=1x+6 | | 6x+9=1x+5 | | 7w+1=-9(w-9) | | 10t^2-3.2t+4=0 | | 16-2r=-3r+6r+1 | | 6x+9=1x+4 | | 6x+9=1x+3 | | 6x+9=1x+2 | | -1/2x=24 | | -b-3(-8-6b)=4+7b | | 5x=3.12-x | | 2x+20+95+x=180 | | 2x+20+x95=180 | | 12^-x+7=13^-5x | | k+6=k+2(k+1) | | 6x=336 | | 35=11x+5 | | -36-p=-2(8+7p)+6 | | 2x20=10 | | -6(5b-5)=2b-34 | | 7x-55=4x+14 | | 10x-156=-2x+72 | | -45+5x=42+2x | | 5-8a=-3+2(1-7a) | | 3x-7=-2x+6x+10 | | 0=5x^2-36x+55 | | 15m+5=210 | | 3(7-7v)=21+8v | | -146-4x=54-12x | | 1/2c=42/5 |